A stabilized finite element method for advection-diffusion equations on surfaces
نویسندگان
چکیده
منابع مشابه
A Stabilized Finite Element Method for Advection–Diffusion Equations on Surfaces∗
A recently developed Eulerian finite element method is applied to solve advectiondiffusion equations posed on hypersurfaces. When transport processes on a surface dominate over diffusion, finite element methods tend to be unstable unless the mesh is sufficiently fine. The paper introduces a stabilized finite element formulation based on the SUPG technique. An error analysis of the method is giv...
متن کاملA stabilized finite element formulation for advection-diffusion using the generalized finite element framework
The following work presents a generalized (extended) finite element formulation for the advection–diffusion equation. Using enrichment functions that represent the exponential nature of the exact solution, smooth numerical solutions are obtained for problems with steep gradients and high Peclet numbers (up to Pe = 25) in one and two-dimensions. As opposed to traditional stabilized methods that ...
متن کاملA multiscale/stabilized finite element method for the advection–diffusion equation
This paper presents a multiscale method that yields a stabilized finite element formulation for the advection–diffusion equation. The multiscale method arises from a decomposition of the scalar field into coarse (resolved) scale and fine (unresolved) scale. The resulting stabilized formulation possesses superior properties like that of the SUPG and the GLS methods. A significant feature of the ...
متن کاملA Variational Multiscale Stabilized Finite Element Method for Stochastic Advection-Diffusion and Stochastic Incompress- ible Flow
An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the linear stochastic scalar advection-diffusion equation and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formul...
متن کاملA parameter-free stabilized finite element method for scalar advection-diffusion problems
We formulate and study numerically a new, parameter-free stabilized finite element method for advectiondiffusion problems. Using properties of compatible finite element spaces we establish connection between nodal diffusive fluxes and one-dimensional diffusion equations on the edges of the mesh. To define the stabilized method we extend this relationship to the advection-diffusion case by solvi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IMA Journal of Numerical Analysis
سال: 2013
ISSN: 0272-4979,1464-3642
DOI: 10.1093/imanum/drt016